
o 0 = 10-18 kg/mm 2, were: n = 3, 59; A = 1.29"10 -7 (kg/mm~)3'S9h 1 ;B = 2.21"10 -7 (kg /mm2)a ' sgh  I ; r  = 1.365. Theoreti- 
cal curves of  the creep (8), corresponding to the model (6), are plot ted by the d a s h - d 0 t  lines in Fig. 5. 

Table 2 gives values of the fracture time t* and the corresponding deformations p* with all the stresses considered. 
With g = 1,the above values of t* and p* were obtained in the experiments of  [2, 3]. With g = 2, values of  t* and p* 
corresponding to the last point  of  the curve (9) are given. With g = 3, the values of t* were calculated using (7), and 
the values of  p* ; A/B. It follows from the curves that each of  the two theoretical models considered describes the 
experimental data of  [2, 3] rather welt. 
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INVARIANT SOLUTIONS OF A THREE-DIMENSIONAL 

IDEAL PLASTICITY PROBLEM 

S. I. Senashov UDC 539.374 

I. The state of  the three-dimensional flow of an incompressible plastic medium can be described by using the 
following system of  equations [ 1 ]: 

P, 1 : 2A Aa eijernnUr~lj n, (1 )  

u~.~ = 0, A ~ = e~ieij, 2e~ 3 = u~.j -k- ul.~ (i ,  ], m ,  n = t ,  2, 3), 

where x~, x 2, x 3 is a rectangular coordinate system, (ul, u2, u3) is the velocity vector, p is the hydrostat ic pressure, and k s 

is the yield point. Summation is assumed to be over the repeated subscripts, and the subscript after the comma denotes 
differentiation with respect to the space variable with this subscript. Few exact solutions of  this system are known at this 
time [2]. Axisymmetric  solutions are not examined here, the papers [3-7] are devoted to them. 

Let us use the method in [8] to seek particular solutions of  the system (1.1). A group of  continuous transformations 
allowed by the system (1.1) is generated by the following operators: 

X~ = O/Oxi, Y i  = O/Oul, M = xiO/Oxi, N = u~O/Oui, 

Z~ = z s O / O x 3 - - x a O / O x  2 + u20/Ou 3 - -  u30/Ou2, 

T 1 = x20/Ou ~ - -  xaO/Ou 2, S = O/Op. 

Four  other operators Z2, Z 3 and T 2, T 3 are obtained from Z 1 , T 1 by circular commutat ion of the subscripts. 

The group Gls is unsolvable, the operator  S generates the center of this group. Let us construct optimal systems 

of  the first, second, and third orders. They must be constructed in order to seek substantially different solutions in the 
group sense. Let us mention certain invariant solutions. 

2. The invariant solution in the subgroup (X 3 --' T1 + czT2 + ~3T~) was found in [9]. It describes the flow of  a 

prismatic rod of plastic material that is subjected to tension, torsion, and bending simultaneously. 

The solution in the subgroup (X1 + f l  + aT2, X~ - -  /'2 + [~T1) was investigated in [I0] .  This solution describes 

the kinetic field corresponding to a homogeneous state of  stress. 

The invariant solution relative to the subgroup (T~ + X~, aX~ + X 2 - -  T~ -? [3Y 1 4- ?Y~) was studied in [11 ], 

where it is interesting in that it  depends on 17 constants. 
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The so lu t ion  in the subgroup<X~ -? Y~>was examined  in [ 12]. I t  has the form 

ul = axe, u S = bx~, u s = - - (a  -~- b)xa + i(x~, xe). 

Here 

( 2 . t )  

e~ = b, e~ = 0, e~ = - - ( a  + b), 

(h~ = --p(x~, x~) + ~,a, %~. = --p(Xl ,  x~) + )~b, 

%~ = --p(x~, x~) - -  (a + b)L, ~ = O, 

~ia = ],Q~, ~ = / , ~ ' ,  L = g 2  k~ (e~e~) -~/~, 

and the funct ion  p(x I , x 2) is de te rmined  f rom the equi l ibr ium equations.  

I f  a 7 ~ b, we then ob ta in  an extens ion  of  the known  Prandt l  solut ion for  a plastic mass compressed be tween two 
slabs to the three-dimensional  case. 

I f a  = b, then jus t  one of  the possible solut ions is ob ta ined  in [12]:  ] = V t  - 4(xl - p)2 - . 4 ( x ~  - q)2 . Let  us 

f ind the o ther  so lu t ion  in this case. Subs t i tu t ing  (2.1)  in to  (1.1),  we have 

p = a~ § % 

( ,1 ,,+( 
]//-6a2 + 1,~1 -]- 1,~ ) ,1 ] /6a2  +-)-.~ § ]~2 ,2 q '  (2.2) 

where c x , c 2 are a rb i t ra ry  constants .  

F o r  c z = 0 Eq. (2.2)  goes over in to  the well-s tudied equa t ion  of  min imal  surface. In  par t icular ,  f can be taken  
in the form 

x~ 
t)  ] = V - 6 a l n C ~  2) f = l / - 6 a a r e t g ~ ,  3) / = V ' 6 a A r c h ] / / x ~ % - x ~ .  

COS Z 1 ~ 

The appropr ia te  s ta te  of  stress is de te rmined  f rom (2.2). 

3. Let  us seek the so lu t ion  in the subgroup <X 3 %- eN> . I t  has the form 

us = u* (x 1, x2) exp ex~, p = p (zl, x2). (3.1)  

Subs t i tu t ing  (3.1)  in to  (1.1),  we obta in  a system S/H in the funct ions  u*, p 

* t * ~ * ] 
( U q , 2  ~ -  Lt2.1) j ,2  = (Lul,1),~ %- --U [L P,1, 

t * * * (3 .2 )  [z (u. .  + u~,~)],~ + (~,~,J,~- p,~, 

L~(~L + ~;)],~ + [~ (~;,~ + ~;)],~ = 0, 

u'L1 + ~;., + ~u; = 0, ~ = V 5  k. [ (u ; .3 '  + M . , ) '  + 
* S ' l  + (~,., + ~,.i) + (~,., + ~ ) '  + (~:., + ~; ) '1 - ' " .  

Assuming e infini tesimal,  we expand  the desired funct ions  in a series in this pa ramete r  

k=O k=O 

If  u(3~ (x i , x z) = 0 then u(~~ x2), u~ 0 (xx, x~), pco) (x i, xs) are the solut ion of  the plane p rob lem of  ideal plast ici ty.  

In this case, we have f rom (3.2)  for  the i-th app rox ima t ion  

( ~ u ? . ' , ) . l + @ [ ~ ( u ? ) , . + u  "'~1 - - ( , ,  2 , 1 ] j , 2  - -  P.x, 

(i) (3 .3 )  u (i~ ~I I -I- (~,u~,~).~ (~  - ~  [~(~??~+ ,.,,~. = p . , .  
2 

u('!i (') u(,-1) + u~.~ + = 0, 

[~'~u.,,(" + u i ' - l ' ) ] , ,  + [~ ,tu"),.~ + u~ , ' - ' ) ] , ,  = 0. 

Here 
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After  having determined all u! k) from (3.1), we have 
1 

h~o \l~o " /* 

Let us note that the first-approximation velocity field 

u~ = u(~ ~ + ~u?)z3  

describes a s t ress -s t ra in  state of  a beam in the plane strain plastic state and subjected to the action of an infinitesimal 
torque 

(1) ' 31 21 Gz = s ~ ~ (~a2xl  w- ~Jr ' dxidx2. 

Now, let u~ ~ = u(~ ~ = 0, and u(~ ~ = c o n s t ,  p(O) _-- coast. 

In the zeroth approximation,  (1.1) is satisfied identically. 

In the i-th approximation we have the system of  equations (3.3), but here 

= V ~  k~ I ~?~ 1-1 = coast .  

This velocity field can be interpreted as follows. In the half-space x 3 ~< 0 let a thin edge be impressed, its equation 
is 

ex3 = f(xl,  x~). (3.4) 

In this case the zeroth approximation will correspond to the impression of a zero-thickness edge. 

The normal to the surface of the edge is written in the form 

0 / .  

In a first approximation the velocity vector has the form 

v = ~u?)i  + ~ ( ~ ' i  + (u(~ ~ + ~ 3 ( ' ) k .  

The velocity vector on the edge surface lies in a plane tangent to the edge, consequently 

(0) (v ,  a) - 0, (1) o l .  eu~l) ol _ ~ ( ~  + ~u(1)). (3 . s )  - ~  ~ - ~  

Linearizing (3.5), we obtain 

u(O) , (~) ~ , (~) ~ = ~ t  ~ + ~ 2  ~ for x 3 = 0 .  (3.6) 

To determine u~(~), u~ ~) it  is now necessary to solve (3.3) with the boundary conditions (3.6). We obtain the 

boundary condit ion analogously in the successive approximations and we take account of the fact that u(3i)= 0 (i = 1, 2, 3, 

...) on the edge surface. 

Let us note that the case when a plane edge is impressed, i.e., x 2 is not  in the right side of (3.4), was studied in 
[4]. 

4. We seek the invariant solution in the subgroup (X 2 - -  Xa, Xa § N -t- a S )  in the form 

ul = u(xl) exp ~, us = v(xl) exp ~, ua = w(xl) exp ~, (4.1) 
p = p(xO + a~, ~ = x2 + x~, cza = 1. 

Taking (4.1) into account, the system in the stress deviator components is written in the form 

OS 1 Op OTio Orla 

S ] +  S 2 S ~ ~ ~ + , + 2 (~]~ + ~ + ~ )  = 2~ 2. 

Sl  -t- S~ -t- S ,  = 0, $1 = Xu', $2 ----- i~v, S~ = Xw, (4 .2)  

2vx~ = ~(u + v'), 2wa3 = ;~(v + w'), 

2~23 -= ~(v + w), ~, = Vf2ks(eiielj)  -x;z. 

The prime denotes differentiation with respect to x~. From (4.2) we have 

T12 = a $ 1  - ~  s T13 : QXl  - ~  c~. 
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I f  C 1 = C 2, then v * = w'. Let us consider v = w. Then 

%s = 2S~, $1 = 2S~, $2---- Sa. 

We have from the fluidity condition 

V S~---- 4- I / k , - -  ~ 2~],. 

The stress tensor components are written in the form 

(r 1 = r = c o a s t ,  a~ = 3 S ~  --k c, ~a = 38s  + c, 

This solution can be interpreted as the three-dimensional flow of a plastic material between slabs parallel to the Ox 2 x 3 
plane, which approach each other along the Ox I axis. 

The velocity field is determined from the solution of the system 

O 1 
u' + 2v = o, ut l (u + v') = 

with the boundary conditions 

u(Z) = - v ,  u ( - l )  = v ,  v(l) = v ( - t )  = O, 

where V is the slab velocity along the Oxl axis, and 21 is the distance between the slabs. 

The author is grateful to B. D. Annin for formulating the problem and discussing the results. 
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