0, = 10-18 kg/mm?, were: n =3, 59; A = 1.29-107 (kg/mm?)¥h!;B= 221107 (kg/mm?)3-5h? ;1= 1.365. Theoreti-
cal curves of the creep (8), corresponding to the model (6), are plotted by the dash—dot lines in Fig. 5.

Table 2 gives values of the fracture time t* and the corresponding deformations p* with all the stresses considered.
With g = 1,the above values of t* and p* were obtained in the experiments of [2, 3]. With g = 2, values of t* and p*
corresponding to the last peint of the curve (9) are given. With g = 3, the values of t* were calculated using (7), and
the values of p* = A/B. It follows from the curves that each of the two theoretical models considered describes the
experimental data of [2, 3] rather well.
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INVARIANT SOLUTIONS OF A THREE-DIMENSIONAL
IDEAL PLASTICITY PROBLEM

S. 1. Senashov UDC 539.374

1. The state of the three-dimensional flow of an incompressible plastic medium can be described by using the
following system of equations [1]:

_-‘/2 ksui,ﬁ___vz k, €rilr T )
Pia= 24 As ijtmnmgin;

uis =10, A®=eye;, 2e=1u;;+ u (G, 7, mn=1,23),

where X , X, X, is 2 rectangular coordinate system, (ul, u,, ) is the velocity vector, p is the hydrostatic pressure, and k.

is the yield point. Summation is assumed to be over the repeated subscripts, and the subscript after the comma denotes
differentiation with respect to the space variable with this subscript. Few exact solutions of this system are known at this
time [2]. Axisymmetric solutions are not examined here, the papers [3-7] are devoted to them.

Let us use the method in [8] to seek particular solutions of the system (1.1). A group of continuous transformations
allowed by the system (1.1) is generated by the following operators:

Xi = 6/6‘xi, Yi = 6/6ui, M= x,-z?/(?xi, N = uia/éui,
7y = x30/0xy — x40/8z, + u,0/0us — uyd/0u,,
Ty = z,0/0u3 — z,0/0u,, S = 8/8p.

Four other operators Zz, Z3 and Tz, T3 are obtained from Zv T1 by circular commutation of the subscripts.
The group G, is unsolvable, the operator S generates the center of this group. Let us construct optimal systems

of the first, second, and third orders. They must be constructed in order to seek substantially different solutions in the
group sense. Let us mention certain invariant solutions.

2. The invariant solution in the subgroup (X, + 7y + aT, + BTs> was found in [9]. It describes the flow of a
prismatic rod of plastic material that is subjected to tension, torsion, and bending simultaneously.

The solution in the subgroup (X, + 7y + aly, X, — Iy + pT,> was investigated in [10]. This solution describes
the kinetic field corresponding to a homogeneous state of stress.

The invariant solution relative to the subgroup (7, + X3, aX; + X, — 7, 4+ BY; + vY,» was studied in [11],
where it is interesting in that it depends on 17 constants.

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 159-163, May-June,
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. It has the form
2.1

The solution in the subgroup{X; + Y,)was examined in {12]
Uy = axy, U, = bxy, uy = —(a + b)zz + fzy, 2,)-

Here
=a, éi3=11, g3 ="12

€n
€y = b, €5 =0, 53 = —(a + 1),
Oy =~ _p(xh .’L‘2) + 7"“’ 022 = —p(xlv '7:2) I }"bv

Og3 = ““P(»’Cu 1‘2) - (d -+ b)’h O3 = 0
s = Fiahy Ogs = Fohy A=VZ ky(eyes) "

i Xx,) is determined from the equilibrium equations
If ¢ # b, we then obtain an extension of the known Prandtl solution for a plastic mass compressed between two
Let us

and the function p(xl,
slabs to the three-dimensional case
If ¢ = b, then just one of the possible solutions is obtained in [12]: f = V1 — 4(z; — p)* —.4(x, — g)* .

find the other solution in this case. Substituting (2.1) into (1.1), we have

= a?» L ey,
' /1 e N\ o, 2.2)
Ver+rA 41, } Ve AT
where ¢, ¢, are arbitrary constants.
For ¢, = 0 Eq. (2.2) goes over into the well-studied equation of minimal surface. In particular, f can be taken
in the form
z _ k3 — —_—e
1) f=]/_6alnc0w2 2) f=VBaarctg, 3) f=VBaArwch) o+
1 1
The appropriate state of stress is determined from (2.2) '
3. Let us seek the solution in the subgroup (X, -- eN) . It has the form
U = u; (21, Z,) €XP &3, P = P (Tq, Tp) .1
Substituting (3.1) into (1.1), we obtain a system S/H in the functions u¥ p
(7“”:,1),1 + 7” (ul 3+ )] 2= D1,
(3.2)

5 D” (u:z + ujl)}l + (7“‘:.2),2 = P2,

[?»(u;l + 8”:)1,1 -+ [}\‘ (uzz + Su:)],z =0,
uly +ussteus =0, A=V2k[(u]:) +(u34)
+ (e + una )+ (g + eug)? 4 (use + g )P V%

Assuming e infinitesimal, we expand the desired functions in a series in this parameter
k(R k
E & u(; )(111 ), p= ; e'p (z4, z,)-

k=0
x,) = O then u Oz, z,), u? (z,, z,), £®@ (zi, ;) are the solution of the plane problem of ideal plasticity

If u(3°) (Xi "
In this case, we have from (3.2) for the i-th approx1mat10n
(). + 5 (A s+ u) ] = B2
= [+ )]0+ (0 (3.3)
Wy -+ s £ =0,
[ G )] + 0 G 4 )] =0

uh).e = P

Here
% V§ k, [(u(o))a + (u(o))z+ (u(o) +u(2?)1) ] /%
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After having determined all u® from (3.1), we have
1
o &k
u;= 3, ek (Z u(i”zg“l).
h=0 i=o

Let us note that the first-approximation velocity field
u; = ul® + eu{z,

describes a stress—strain state of a beam in the plane strain plastic state and subjected to the action of an infinitesimal
torque

G, =¢g 5. _Y (o%0z, + o'¥¥z,) dz,dz,.
Now, let 2{” = uf® = 0, and u{® = const, p'® = const.
In the zeroth approximation, (1.1) is satisfied identically.
In the i-th approximation we have the system of equations (3.3), but here

A=V2Ek|u® | = const.
This velocity field can be interpreted as follows. In the half-space x, < 0 let a thin edge be impressed. Its equation

is
ez = f(z1, 2,). (3.4)

In this case the zeroth approximation will correspond to the impression of a zero-thickness edge.
The normal to the surface of the edge is written in the form

8., OF .
n=s=it i ek.
1 et
In a first approximation the velocity vector has the form
V = euMi + eutMj + (2 + eui) k.

The velocity vector on the edge surface lies in a plane tangent to the edge, consequently

(V,n) = au‘ll)g—'f« +eul® 2 e (4l + eul?). (3.5
z, 6:2
Linearizing (3.5), we obtain
a 8
u) = u(lna—;f; +uP L o 2= (3.6)

To determine ugl), u(zl) it is now necessary to solve (3.3) with the boundary conditions (3.6). We obtain the
boundary condition analogously in the successive approximations and we take account of the fact that u(;)= 0@G=1, 2,3,
...) on the edge surface.

Let us note that the case when a plane edge is impressed, i.e., X,
[4].

4. We seek the invariant solution in the subgroup (X, — X5, X; - ¥ 4+ aS> in the form

is not in the right side of (3.4), was studied in

Uy = u(xl) exp g? Uz = U(.T1> exp gv Uz = w(‘zl) exp Ev (4 1)
P:P($1)+“§a§:$2+393,0€a:1- ’

Taking (4.1) into account, the system in the stress deviator components is written in the form

98, _dp 9T, 1y,

= =y = =0
Si -+ Sg + S; +2 (17?2 + T%s + ’533) = 2k,
S+ Sy 4 Sy =0, S = hu'y 8, = Aoy S = s, (4.2)
21y, = AMu + V'), 213 = My + w'),
2%, = My + w), A = vV 2ke o)

The prime denotes differentiation with respect to x,. From (4.2) we have

Ty = afy + €, Tyg = Q7 + €5
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If ¢, =c,, then v'=w. Let us consider v = w. Then
Ty = 28, Sy = 28, S5 = S,

We have from the fluidity condition
S, =+ 1/71 Vkﬁ— 215,.

The stress tensor components are written in the form

0y = ¢ == const, o4 = 385, + ¢, 03 =35, ¥ ¢,
Ty3 = 28;, Tyy = Ty3 = az; + 6.

This solution can be interpreted as the three-dimensional flow of a plastic material between slabs parallel to the Ox, x4
plane, which approach each other along the Ox, axis.

The velocity field is determined from the solution of the system
W2 =0, ulatv)= o
12

with the boundary conditions
ul) = =V, u(—1) =V, v(l) = v(—1) =0,
where V is the slab velocity along the Ox, axis, and 2/ is the distance between the slabs.
The author is grateful to B. D. Annin for formulating the problem and discussing the results.
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